Latest Research from USA

The major aspects influencing parlour throughput: How fast cows enter the parlour How soon units are attached How soon peak flow rate is achieved after unit attachment How soon units are detached
Milking Phases The milk flow during the milking of a properly stimulated individual cow can be speculated as having 5 phases .
Phase 0 – Start-up from attach to first flow – cisternal emptying?
Phase 1 – Rise up from first flow to peak flow
Phase 2 – Peak flow: peak (plateau) milk flow
Phase 3 – Slope down post-peak, still above take-off settings
Phase 4 – Dribble waiting for take-off to function
Take-Off Settings
The ability to adjust take-off settings varies from manufacturers. There are two general settings: minimum flow before automatic detachment and maximum time before detach.
Because of the difference among the manufacturers The National Mastitis Council is looking for a standard definition for unit-on-time, peak flow, duration of time in low flow, and a standardized method of evaluating take-offs.
Currently, we use the following:
Unit-on-time Total vacuum-on duration (not dump-to-dump)
Peak flow Average flow rate (total yield) during the second minute
Time is low flow Total duration with flow less than 1 kg per minute
Operation of Automatic Cluster Remover
Decrease the take-off wait time to 5 second, and then make gradual increases in the take-off flow rates. If the maximum unit-on-time can be controlled, starting at 10 minutes is probably safe. Some manufacturers do not have this- facility Continue decreasing maximum unit-on time and increasing take-off flow rates on a weekly basis until no further improvement is seen. Eventually, once the proper functioning of the take-offs has been substantiated, the milking vacuum level can slowly be raised.

Latest News from USA

Federal Milk Market Administrator U.S. Department of Agriculture

2015 to 2016 Somatic cell counts (SCCs) continued to decline in the four Federal Milk Marketing Orders which monitor SCCs and report results, according to a report in the Upper Midwest Dairy News

The state with the lowest BTSCC was Wyoming, which had an average of just 125,000 cells/mL. Wyoming dairies included in the summary have had cell counts below 150,000 for at least the last six years. Michigan had the next lowest BTSCC average at 157,000. Colorado, Indiana, Iowa, Kansas, Minnesota, Nebraska, New Mexico, North Dakota, Ohio and Wisconsin were all below 200,000. Monitored milk from 24,131 producers
Maximum BTSCC levels for other countries include 400,000 cells/mL in the European Union (EU), Australia, New Zealand, and Canada. Although there has been increasing support in the last few years for lowering the maximum BTSCC for Grade milk in the U.S. to 400,000 cells/mL, no changes have been made to the PMO Since the Mid-West imposed a 400.000 from 750.000 the Average cell count has dropped significantly.

I was glad to hear that one of the Scheduled Monthly monitoring of testing the milking machine along with monthly cow health management.

The Milking Machines were tested regularly at least every three months.

After milking care ?

When it comes to milk quality, many dairy herds emphasize premilking protocols, such as application of germicides, teat stimulation and drying of teats. This emphasis is warranted, many standard preparation practices help reduce mastitis and improve milking efficiency. But what about after milking care?

1. Post milking teat dip
This is one of the most important practices. Every milking quarter of every cow should be dipped immediately after milking. Teats should be completely covered National Mastitis Council Recommend over 90 %. This is more difficult with sprayers rather than dip cups. Teat dip cups must be free of organic matter.

Each time you start the use of a new barrel or container of a post dip, mark the volume level of solution and date on the barrel. Follow consumption of that and any other component containers regularly to ensure the rates are what are expected according to the labelled ratio of the final product.
On average, the amount of teat dip used per cow per milking will be 10cc = 10milliters.
A 250 Cow herd twice a day milking will use 5000milliters a day.

2. Automated detachers
This equipment prevents over milking of cows. This leads to poor teat health and increased risk for mastitis. Cows should not be milked dry, a cup of milk should be easily hand stripped after milking. Over milking negatively affects teat health and reduces flow. This decreases turnover rate and most importantly, increases time in the holding pen and milking parlour when cows could be lying down or eating.
Automatic detachers should be evaluated regularly, as with other milking equipment, and milkers should be reminded to rely on automatic removal of milking units and to set units to manual only for select cows, such as after a unit is kicked off., if the automatic detachers are not maintained, milkers might resort to more frequent use of manual removal of units.

Low Cell Count, High Mastitis incidence.?

After several visits to investigate an issue with mastitis
The milking Machine was Tested no issues.
Pre and post cleanliness was very good.
The teats were sprayed, 100% contact
The beds were sand, cleaned twice a day, re-covered once a month all isolated areas cleaned
Water troughs cleaned every other day.

A bacteriology test was taken the cause was Streptococcus uberis
These are environmental organisms commonly found
In manure and other organic matter, including bedding.
Poor udder cleanliness, inadequate stalls management,
And damaged teat ends also appear to increase
The risk of spreading S. uberis to uninfected cows.

S. uberis will spread to uninfected cows through environmental
Contact. Reducing environmental contact
With S. uberis is especially important in the early dry
Period. As with all environmental organisms, maintaining
A clean and dry environment for cows to lie in is
Of utmost importance. In particular, the use of inorganic
Bedding (sand) will reduce the environmental contamination
With these bacteria

So all the above were above adequate this was becoming very baffling.
However on one morning visit the farmer himself was milking and when a slow cow was being milked he would proceed to use the volume wash hose to clean the cows hoofs with no control over where the water was being sprayed, resulting in water dripping down to an open teat end regardless of whether it had been sprayed, it took some convincing to stop this procedure.

Water use in the milking process should be kept to a minimum. If water is used, be
Sure to only wet the teats and not the entire udder. It is nearly impossible to dry the udder
Generally, the Use of water in the parlour results in increased mastitis and higher bacteria levels in milk.
All Teats should be thoroughly dried with a single service,

The End result is a reduced amount of Clinical mastitis .

Have You Checked Your Temperature Lately

A recent visit to try to resolve a fluctuating bacteria count showed a poor technique with no resolution.

Without optimal cleaning and disinfection protocols, the milking machine is one of the main vectors to spread mastitis and causing raised bacteria levels on a dairy farm.

With your thermometer, monitor the temperature of the rinse cycle at the return line.

Rinse water temperature below 93ºF (33°C) will allow milk fat to deposit on milking equipment surfaces.

Rinse water temperature above 120ºF (48°C) will denature any remaining protein and create protein films. These films are colourless at first but develop a yellow colour as they build up. Protein films provide contact areas on surfaces where bacteria can grow.

Most dairy farms use a chlorinated alkaline detergent in either liquid or powdered form. Add your detergent to the wash water according to manufacturer specifications.
At this point the client was using excessive amounts of detergent, causing only frustration.
Increasing the amount over and above the recommended rate is pointless.

Why chlorinated? The chlorine increases the solubility of any remaining protein and helps to remove it with the detergent wash water during the wash cycle

The temperature of the chlorinated alkaline detergent solution should be between 160ºF and 170ºF (71° – 82 °C) at the start of the wash cycle. Typically, the wash cycle is at least 10 minutes, but this will vary with each parlour depending on size and type of parlour

It is important the temperature of the chlorinated alkaline detergent wash does not fall below 120ºF(48C) as it leaves the system (check this with your thermometer), because any milk solids either in solution or in suspension may be re-deposited on contact surfaces.
The Clients thermometer was reading 140ºF (60C) however the actual reading was 120ºF (48°C)
On the first pass the temperature had dropped 30ºF (1.1°C)

In all cases, hot water volumes need to be sufficient to allow wash cycles to run at least 10 minutes above 120°F (48°C) if this standard can’t be met, hot water storage volumes must be increased.
A new water heater was fitted and the first month bacteria count had a huge drop and had stabilised.

Staphylococcus aureus Mastitis: Cause, Detection, and Control

Control measures aimed at preventing S. aureus from entering the teat canal, namely milking time hygiene, has reduced the prevalence of this disease on many modern farms, yet the disease is still prevalent .

Staphylococcus aureus causes one of the most common types of chronic mastitis. Though some cows may flare up with clinical mastitis (especially after calving), the infection is usually subclinical, causing elevated somatic cell counts (SCC) but no detectable changes in milk or the udder

S. aureus bacteria produce toxins that destroy cell membranes and can directly damage milk-producing tissue. White blood cells (leukocytes) are attracted to the area of inflammation where they attempt to fight the infection.

The major reservoirs of S. aureus are infected udders, teat canals, and teat lesions, but these bacteria also have been found on teat skin, muzzles, and nostrils. The bacteria are spread to uninfected quarters by teat cup liners, milkers’ hands, washcloths, and flies

1. Milkers should always wear gloves and change them frequently, especially when dirty or after stripping an infected animal. It is recommended to fore strip five squirts of milk from each quarter and check for abnormal milk or flakes.
2. Dirt should be brushed off teats with the use of a dry, single-use towel. Water should not be used as part of any milking procedures, even if a sanitizing solution is added. Sanitizers do not maintain activity throughout a milking, and water can introduce pathogens that are very difficult to cure.
A commercially available pre-dip should be applied with a dipper or cup and given 30 seconds of contact time. Sprayers can be used, but proper coverage is difficult to attain, especially on the teats farthest from the milker. Foamers are also commonly used, but caution must be taken to ensure that adequate parts per million of the active ingredient reach the teat end and teat skin.
3. A separate paper or cloth towel should be used to dry teats and scrub teats five times or for 20 seconds (Rasmussen et al., 1992). Towels must not be used on more than one cow.
4. Milking units should be attached 90 seconds after first tactile stimulation (stripping or wiping, whichever comes first).
5. Teat ends should be examined for evidence of chapping, cracks, or lesions, which may harbour mastitis-causing bacteria.
6. An effective post-milking teat dip should be applied after milking, ensuring that the entire barrel of each teat is covered. At the end of each milking, any teat dip left in the dip cup should be discarded, and cups should be rinsed with water and allowed to dry.
It is important to educate your employees.

Antibiotic treatment will not control this disease, but it may, in certain cases, shorten the duration of the infection. Treatment effectiveness decreases as the cow becomes older and even as the first lactation progresses

Dry cow therapy is more effective in eliminating infections than lactating treatment.

Low mean Milking Vacuum

At a recent milking time visit to a high yield herd, I noticed mean claw vacuums during our milking time testing often getting as low as 30 – 32 kPa during peak milk flow, despite the system vacuum being 46 kPa on a mid-level installation The national mastitis Council recommends average claw vacuums between 36 and 42 kPa during peak milk flow, it was very important to understand what was going on. The milking machine can transmit infection onto teats and disturb normal teat health, quantifying the degree to which the milking machine might be contributing to the risk of new intra-mammary infection. Cows’ teat size and position have changed as have milk flow rates. Milk yields have been rising faster than unit attachment times. Milk flow rate has been shown to be positively associated with risk of new intra-mammary infection “Milking time testing” A milking-time test is a test performed while milking cows and with the milking system under normal use conditions. Some cows had been achieving milk flow rates approaching 7.5 litres/min. This is quite high for typical British cows, where flow rates often don’t exceed about 5 litres/min. The milking machine had a claw capacity of 220 litres with an 8 litre bleed from the claw the length of milk tube was over 3 meters with an inline cut off valve and in line automatic cluster remover canister The long milk tube was supposed to be 12.5 mm internal diameter , the real diameter measured was 11mm ,the slug length was excessive, however the Variable Speed Drive was not installed correctly and the recovery was affecting the vacuum drop by as much as 10 kpa . The pulsation rate was 49ppm .