Trace Minerals and the immune system

Mastitis is an inflammation of the mammary gland, probably the most prevalent disease on your farm with the highest monetary loss in dairy herds. In addition to the economic losses, mastitis in most cases is caused by bacterial invasion. Pathogenicity of the bacteria together with environmental factors and the individual condition of the cow will decide how prevalent the disease.  

Infection such as Staphylococcus aureus could produce long term mastitis; Escherichia coli are usually isolated from mastitis with an acute response.

The immunity of the cow plays a main role in the development of the mastitis

Some nutrients as trace minerals are somewhat important for the immune response against the pathogenic bacteria.

Knowledge of the trace minerals and their action mechanism is very important to improve the status of the immune system, to prevent infections and to reduce the effects produced by mastitis.

Trace minerals like zinc, iron or copper are present at a very low level but they are involved in essential functions such as catalysis of different reactions and functional processes. Trace minerals are an essential part of different proteins with different functions in the immune system.

Zinc in the organism is bound to the methallotionein that acts in the activation, adherence and invasive capacity of the macrophages.

Iron is a component of the lactoferrin, transferrin and desferoxamine. Lactoferrin is a very important glycoprotein with a high presence in milk and another epithelial secretions with high activity bactericide and bacteriostatic ability it has an inmunomodulator effect. Different research papers have shown higher lactoferrin concentrations in milk obtained from infected teats than from milk obtained from healthy teats. Epithelium secretes lactoferrin as an unspecific response against pathogenic agents. The lactoferrin could reduce the growth of many bacteria responsible for mastitis like E. coli and S. aureus. However, another bacterium like Streptococcus uberis does not reduce their development under high concentration of lactoferrin. 

Copper works in the immune response as a component of the ceruloplasmin that is involved in the inflammatory process, moreover it has antioxidant properties and plays a key role in the homeostasis of iron.

The effect of minerals in the reduction of somatic cell count and mastitis is very well known. The inclusion of organically chelated zinc has been reported to reduce somatic cell count (SCC) in high producing dairy cows, particularly when the initial SCC was high. Mechanism involved in the immune response against mastitis and infected cows

Trace minerals have an important role to play in the immune response. They participate in the immune cycle. The immune reaction is different depending on the mastitis and whether it is chronic or acute.

There is an important economic advantage to be gained by improving udder health in dairy herds. Approaches to promote these aspects should be focused on all aspects of prevention; nutrition can play a key role in maximising the immune function